

0277-5387(94)00468-4

SYNTHESIS AND CHARACTERIZATION OF DERIVATIVES OF COPPER(I) WITH N-DONOR LIGANDS—I. AZOLE AND BIS(AZOLYL)ALKANE COMPOUNDS. CRYSTAL STRUCTURE OF NITRATO BIS(TRI-*p*-TOLYLPHOSPHINE)COPPER(I)

CLAUDIO PETTINARI,* GIANCARLO GIOIA LOBBIA, GABRIELLA SCLAVI and DANTE LEONESI

Dipartimento di Scienze Chimiche, Università degli Studi, via S. Agostino 1, I-62032 Camerino, Macerata, Italy

and

MARCELLO COLAPIETRO and GUSTAVO PORTALONE

Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, I-00185-Roma, Italy

(Received 23 August 1994; accepted 23 November 1994)

Abstract—Several new complexes of the type $[Cu(NO_3)(PPh_3)_2(L)_m]$ (L = 3-methylpyrazole, 4-methylpyrazole, 3,5-dimethylpyrazole, 4-bromopyrazole or bis(4-methylpyrazol-1-yl)methane, m = 1; L = pyrazole, 1,2,4-triazole or 2-methylimidazole, m = 2), $[Cu(NO_3)(PPh_3)(L)]$ (L = 3,4,5-trimethylpyrazole or 4-phenylimidazole), $[Cu(NO_3)$ $(PAr_3)_n(L)_3]$ (Ar = p- or m-tolyl, n = 0 or 1, L = pyrazole), $[CuX(PPh_3)_2(L)]$ (X = Cl, Br or 1, L = pyrazole or 3,5-dimethylpyrazole) and $[CuX(PPh_3)(L)]$ (X = Cl or Br, L = bis (pyrazol-1-yl)methane, bis(3,5-dimethylpyrazol-1-yl)methane or bis(triazol-1-yl)methane) have been prepared and characterized by analytical and spectral data. The compounds $[CuX(PPh_3)_2(L)]$ (X = Cl, Br or 1, L = pyrazole or 3.5-dimethylpyrazole) are fluxional at temperature above 240 K. The dinuclear compound $[Cu_2(PPh_3)_3(pzH)_2]$ was obtained when the reaction between $[CuI(PPh_3)_3]$ and pyrazole (pzH) was carried out in methanol containing alkali. In the crystal structure of the title compound, the copper atom is found in a strongly distorted tetrahedral coordination $[P-Cu-P: 128.0(1)^{\circ}]$ with two long Cu-O distances [2.217(9) and 2.184(9) Å].

During our investigation into the coordination chemistry of pyrazole and its derivatives, several zinc, cadmium, mercury, tin and silver compounds were obtained and characterized.¹ These complexes display a diversity of stable structural types in which the pyrazole ring can be N- or C-bonded to metal.

Coordination compounds of copper(I) and copper(II) with nitrogen-donor ligands have been extensively synthesized and described,² but much less work is available on $(Ar_3P)_n(L)_yCu^{T}X$ derivatives $(L = nitrogen donor ligands).^{3,4}$

Interest in such systems, often air-sensitive and labile in solution, arises because of their structural features,⁵ potential application in catalysis⁶ and well-described relevance of copper(I) centres at the active sites of several proteins.⁷

In the previous work⁸ the interaction between $Cu(NO_3)(Ar_3E)_n$ (E = P, Sb or As; n = 2 or 3) and various poly(azol-1-yl)alkanes (Fig. 1), a family of stable and flexible bidentate ligands, has been reported and it has been shown that only the less

^{*} Author to whom correspondence should be addressed.

Fig. 1. Structures of the ligands employed in this work.

hindered $(L^1, L^3 \text{ and } L^4)$ and the more basic nitrogen donors (L^2) are able to displace the phosphine ligands and/or the nitrato group from the starting copper(I) derivatives.

So, it seemed pertinent to extend this investigation to the study of the interaction of $Cu(No_3)(Ar_3P)_2$ with the bis(4-methylpyrazol-1yl)methane, (abbreviated L⁵), more basic than L¹ and less hindered than L², and with the simplest azotate molecule also shown in Fig. 1.

The interaction between $\text{CuX}(\text{Ar}_3\text{P})_n$ (X = Cl, Br, I, CN or SCN) and pzH, pz'H, L¹, L², L³ and L⁴ has been also investigated. The X-ray crystal structure of [Cu(NO₃){(*p*-tolyl)₃P}₂] and a comparison with some related compounds has been reported.

EXPERIMENTAL

All solvents were dried by standard techniques. The reagents were purchased from the Aldrich Chemical Co. and from Alfa. The samples were dried *in vacuo* to constant weight $(20^{\circ}C, ca 0.1 \text{ torr})$. Elemental analyses were carried out in-house with an Elemental analyser 1108 CHNS-O Fisons Instruments. IR spectra from 4000 to 100 cm⁻¹ were recorded with a Perkin–Elmer instrument System 2000 FT-IR. ¹H, ¹³C and ³¹P NMR spectra were recorded on a VX-300 Varian spectrometer operating at room temperature (300 for ¹H, 75 for ¹³C and 121.4 MHz for ³¹P). Melting points were taken on an IA 8100 Electrothermal instrument. The electrical resistance of solutions were measured with a Crison CDTM 522 conductimeter at room temperature.

Synthesis of the ligands

The donors L^1 , L^2 , L^3 , L^4 and L^5 were prepared by the published methods.^{9,10}

Synthesis of the complexes

The derivatives $Cu(NO_3)(Ar_3P)_2$ (Ar = phenyl, *p*-tolyl and *m*-tolyl) and $CuX(Ph_3P)_3$ (X = Cl, Br or I) were prepared by the published methods^{11,12} and their analytical and spectral data are consistent with those reported in the literature.

Nitratobis(tri-o-tolylphosphine)copper(1). Tri-otolylphosphine (5.0 g, 12.1 mmol) in warm methanol (20 cm³) was treated with Cu(NO₃)₂·3H₂O (1.0 g, 4.0 mmol) in methanol (10 cm³). The copper(II) salt dissolved immediately; the blue colour of solution discharged and a pale green colour persisted. The solution was heated at reflux for 2 h, and then stirred to ambient temperature for 8 h. White needles (2.0 g, 2.7 mmol, 67.5%) appeared when the solution was cooled overnight in a freezer compartment. M.p. : 145–7°C. Found : C, 68.8; H, 5.8; N, 1.6. Calc. for C₄₂H₄₂CuNO₃P₂ : C, 68.7; H, 5.8; N, 1.9%.

Cyanobis(triphenylphosphine)copper(I). To a solution of triphenylphosphine (14.46 g, 55.0 mmol) in 200 cm³ of chloroform, CuCN (1.22 g, 14.0 mmol) was added. The reaction solution was stirred overnight at room temperature. Et₂O (200 cm³) was added and a precipitate was formed immediately, which was filtered and washed with Et₂O (50 cm³). The residue was recrystallized from 200 cm³ of hot methanol to give 5.16 (60% yield) of [CuCN[P(C₆H₅)₃]₂], m.p. 180–182°C. Found: C, 72.7; H, 5.0; N, 2.1. Calc. for C₃₇H₃₀CuNP₂: C, 72.4; H, 4.9; N, 2.3%.

Thiocyanatebis(triphenylphosphine)copper (1). This complex was prepared as described for $[CuCN{P(C_6H_5)_3}_2]$ by using PPh₃ (7.75 g, 29 mmol) and CuSCN (0.9 g, 7.0 mmol) to yield a colourless solid (2.39 g, 50% yield). M.p. 233–236°C. Found: C, 68.6; H, 4.8; N, 2.1. Calc. for $C_{37}H_{30}CuNP_2S$: C, 68.8; H, 4.7; N, 2.2%.

Nitratobis(triphenylphosphine)bis(pyrazole)copper(I). Pyrazole (0.14 g, 2.0 mmol) was added to a diethyl suspension (100 cm³) of Cu(NO₃)(Ph₃P)₂ (0.65 g, 1.0 mmol). After 3 h stirring the solid was filtered and washed with ether (20 cm³), affording the products 1 (0.75 g, 0.96 mmol). Compounds 2– 23 and 25 were obtained similarly.

Chloro(triphenylphosphine)bis(triazol-1-yl)methane copper(I). Bis(triazol-1-yl)methane (0.30 g, 2.0 mmol) was added to an acetone suspension (120 cm³) of CuCl(Ph₃P)₃ (0.89 g, 1.0 mmol). After 1.5 day stirring, the solid was filtered and washed with acetone (30 cm³), affording the product **24** (0.49 g, 0.96 mmol). Compound **26** was obtained similarly.

 $[Cu_2(PPh_3)_3(pzH)_2]$. Pyrazole (0.14 g, 2.0 mmol) and KOH (0.11 g, 2.0 mmol) were added to a methanol suspension (100 cm³) of CuI(PPh_3)_3 (1.95 g, 2.0 mmol). The suspension was refluxed for 2 days, then filtered and washed with hot methanol (20 cm³), leaving the product **27** (1.05 g, 0.96 mmol).

X-ray crystallography

Crystal and experimental data are summarized in Table 1. A crystal of C₄₂H₄₂NO₃CuP₂, obtained from a methanol solution, was mounted on a CS automatic four-circle diffractometer equipped with a Huber goniometer¹³ using graphite monochromatized Mo- K_{α} radiation ($\lambda = 0.71069$ Å). The cell parameters were refined by least squares from the angular position of 11 reflections in the range $8 < 2\theta < 17^{\circ}$. The data were collected at room temperature for $3.0 < 2\theta < 60^{\circ}$ from colourless crystal of approximate $0.2 \times 0.2 \times 0.3$ mm using an ω scan technique. The scan rate was automatically chosen according to the peak intensity in the range 2.0–30.0° min⁻¹. Background counts were taken with stationary crystal with an offset of 0.5° at each end of the scan, and a total background to scan time ratio of 0.5. The intensities of three standard reflections, monitored every 97 reflections during the data collections, decayed by ca 20.0%. Data were corrected for Lorentz and polarization effects and for decay, but not for absorption. A total of 2459 independent reflections having $F_0 > 6\sigma F_0$ were used in all subsequent calculations.

Table I. Crystallographic data

Formula	C H NO CuP
Formula weight	734 29
Crystal system	monoclinic
Space group	B) /a
$a(\mathbf{\hat{A}})$	$12_{1}/c$
$u(\mathbf{A})$	10.929(7)
$D(\mathbf{A})$	33.805 (45)
$c(\mathbf{A})$	11.601 (7)
β (°)	117.41 (5)
$V(\dot{A}^{-3})$	3804.9
Ζ	4
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.282
μ (cm ⁻¹)	7.212
<i>F</i> (000)	1536.0
No. of measured reflections	8366
No. of unique reflections	6477
No. of observed reflections,	2459
$ \mathbf{F}_0 > 6\sigma F_0 , n$	
Function minimized	$\Sigma w(F_0 - F_c)^2$
Variables refined, m	442
a, b and c values in the weighting	7.959, 0.039, 0.004
function"	
R^{h}	0.0563
R_{n}^{c}	0.0725
Goodness of fit, S^d	0.6

 $^{a}w = 1.0/(a+b|F_{0}|+c|F_{0}|^{2}).$

 ${}^{b}R = \Sigma(|F_0|^2 - |F_c|^2)/\Sigma F_0^2.$

$${}^{c}R_{w} = \Sigma w(|F_{0}| - |F_{c}|)^{2} / \Sigma w F_{0}^{2}.$$

 ${}^{d}S = \Sigma w(|F_0| - F_0|)^2/(n-m).$

The structure was solved by Patterson and Fourier techniques. All non-hydrogen atoms were refined by full-matrix least-squares methods with anisotropic thermal parameters. The hydrogen atoms were introduced in the final refinement in idealized positions (C—H = 0.96 Å). Each hydrogen atom was assigned the equivalent isotropic temperature factor of the parent carbon atom and allowed to ride on it. The final difference Fourier map, with a root-mean-square deviation of electron density of 0.1 $e^{A^{-3}}$, showed values not exceeding 0.9 $e^{A^{-3}}$ which, however, are not of chemical significance. Atomic scattering factors were taken from ref. 14. All calculations were done on a PC using the SIR CAOS structure determination package.15

RESULTS AND DISCUSSION

The results of the reactions described here are reported in Scheme 1. Different types of products have been obtained, depending on the particular nitrogen-donor ligand and on the starting copper(I) derivative employed. The compounds were characterized through analytical and conductivity data (Table 2), infrared spectra (Table 3), ¹H and in some cases also through ¹³C and ³¹P NMR spectra (Table 4B).

By the reaction of $Cu(NO_3)(PPh_3)_2$ with an excess of pyrazole (abbreviated pzH) or of 2-methylimidazole (Im'H) in diethyl ether, the complexes 1 and 2 respectively are obtained according to eq. (1), whereas when $Cu(NO_3)(PPh_3)_2$ reacts with the sterically hindered 3,5-dimethylpyrazole (pz'H), 3methylpyrazole (pz"H), 4-methylpyrazole (pz*H) or with the less donor 4-bromopyrazole (BrpzH), the complexes 3-6 were obtained (eq. 2). 3,4,5-Trimethylpyrazole (pz°H) is a sterically hindered ligand because of the methyl group near the coordination sites, but is the more basic donor $(pK_a = 4.63)^{16}$ with respect to the other pyrazoles here employed and from its interaction with Cu $(NO_3)(PPh_3)_2$ the 2:1 adduct $[Cu(NO_3)]$ $(PPh_3)(pz^{\circ}H)_2$, 7, was obtained (eq. 3).

The influence of ligands with bulky substituent groups on coordination mode of copper(I), is also well illustrated by the reaction of $Cu(NO_3)(PPh_3)_2$ with Im"H (4-phenylimidazole) which afforded the [$Cu(NO_3)(PPh_3)(Im"H)_2$] derivative, **8**, with displacement of one phosphine (eq. 3'). One phosphine is displaced also from the [$Cu(CO_3){p-CH_3C_6H_4}_2$] by pzH (compounds **9** and **10**, eq. 4), while the introduction of a single methyl group in the *ortho* position of the phenyl rings causes a displacement of all the phosphines coordinated to copper, which is observed when pzH reacts with $[Cu(NO_3){o-CH_3C_6H_4}_2]$, 11 (eq. 5).

The reaction of equimolar amounts of 1,2,4-triazole (tzH) and Cu(NO₃)(PPh₃)₂ gave the compound 12 (eq. 6), whereas when an excess of tzH was employed the derivative 13 is obtained (eq. 6').

Reaction of L^5 with $Cu(NO_3)(PPh_3)_2$ leads to compound 14, $[Cu(L^5)(PPh_3)_2]NO_3$, analogous to the compound previously described with the ligand L^1 (eq. 7).

The compounds **15–20** were readily isolated when pzH or pz'H reacts in diethyl ether with $CuX(PPh_3)_3$ (X = Cl, Br or I), in accordance with eq. (8).

The compound $CuI(PPh_3)(pz'H)$, **21**, was obtained when the reaction between pz'H and $CuI(PPh_3)_3$ was carried out for 2 days. This is in agreement with the behaviour shown by most of the copper(I)phosphino derivatives,¹⁷ which generally when stirred for a long reaction time dissociate in solution losing some of the P-donor ligands.

The ligands L^1 , L^2 and L^3 displace two phosphine groups from CuX(PPh₃)₃ (X = Cl or Br) and yield the derivatives **22–26** (eq. 9).

Finally, if the reaction between a large excess of pzH and CuI(PPh₃)₃ was executed in refluxing methanol and KOH, the derivative 27, empirical formula $C_{30}H_{25.5}CuN_2P_{1.5}$, in accordance with the stoichiometry [Cu(pz)(PPh₃)_{1.5}], was afforded. This unusual and curious stoichiometry has been previously reported for several copper(I) halide derivatives $Cu_2X_2(Ar_3P)_3$ [X = Cl, Br or I; Ar = phenyl or *m*-tolyl].^{12b,18} It has been suggested, also on the basis of X-ray crystal structure determinations, that these compounds are true complexes rather than mixtures and they can be formulated as bridgedhalide dimers. In our case, two pyrazolate anions are probably bridging between two different copper(I) centres, one of which is three-coordinate and the other four-coordinate, as in Fig. 2. The dimeric structure is also supported by the fact that complexes having monohapto pyrazolate ligands are rare.¹⁹ The steric effects determine to a great extent the coordination environment of the copper(I) atom: the formation of $Cu_2(pz)_2(PPh_3)_4$ seems to be precluded by the strong interligand repulsions between the bulky PPh₃ molecules.

The compound **27** is unstable in chloroform and acetone solution: it was readily oxidized by air, giving blue solutions in a very short time.

No reaction was observed with $Cu(NO_3)(PPH_3)_2$ when the ligand was benzotriazole or 3,5-dimethyl-4-iodopyrazole, or with L¹, L², L³, pzH or pz'H when the copper reagent was $CuX(PPh_3)_3$ (X = CN or SCN).

From the reaction of L^1 or L^2 with CuI(PPh₃)₃

no adduct was obtained, but the well-described tetrameric $CuI(PPh_3)^{20}$ was produced.

IR spectra

The infrared spectra of the complexes 1-27 showed several peaks characteristic of the organic ligands: a v(CH) due to the heterocycle was often found at above 3100 cm^{-1} , while at least one band in the $1500-1600 \text{ cm}^{-1}$ region is typical of the ring breathing vibration. In the spectra of the compounds 1-13 and 15-21 the presence of (N---H) stretching vibrations at *ca* 3200 cm^{-1} is consistent

with a monodentate neutral azole coordinated through the pyridine nitrogen.

The IR spectra of the derivatives 1–14 indicated that the nitrate coordination differed significantly from that found in Cu(NO₃)(Ar₃P)₂¹¹: in the complexes 3–7 and 13 the nitrato groups are likely monodentate since their spectra show a separation of 120 cm⁻¹ between the v_1 and v_4 as opposed to a separation of 200 cm⁻¹ in Cu(NO₃)(Ph₃P)₂. Since no copper(I) complexes with a coordination number greater than 4 are known, the presence of ionic nitrate in 1, 2, 9, 10, 12 and 14 seemed likely. The derivatives 8 and 11 also have spectra characteristic

Scheme 1.

Scheme 1 (continued).

of the nitrate ion,²¹ with a strong broad band at about 1350–1380 cm⁻¹, arising from the doubly degenerate vibration v_3 and a sharp band of varying intensity at about 800 cm⁻¹, which arises from the out-of-plane bending mode v_2 .

In the far-IR spectra of all the copper(I) derivatives it is not easy to assign the copper-phosphorus stretching bands because both the PPh₃ and the azole exhibit a number of ligand vibrations in the low-frequency region. However, on the basis of previous reports²² on metal complexes containing triarylphosphines we assigned the strong triplet band near 500 cm⁻¹ to Whiffen's y-vibration (out of plane bending of the phenyl ring) of PPh₃, whereas the second group of vibrations which appear near 400 cm⁻¹ correspond essentially to Whiffen's *t*-vibration. In the spectra of some starting copper(I) derivatives and of some adducts, some bands of medium intensity appeared which are not present in the spectrum of the free N- and P-donor : these bands are similar to those recorded for some (PPh₃)MX complexes²³ and could be tentatively assigned to v(Cu-P) vibrations.

The metal-halide stretching bands in the IR spectra of the CuX(PPh₃)_n derivatives are detected at *ca* 290– 280 (X = Cl), 220–200 (X = Br) and 160–140 cm⁻¹ (X = I), whereas in the spectra of CuCl(PPh₃)_n(L)_y the v(Cu--Cl) falls in the range 230–200 cm⁻¹.

Table 2. Physical	, analytical and	conductivity data	of copper(I)	derivatives 1-27
-------------------	------------------	-------------------	--------------	------------------

		М	V : .1.1	Elemer Fc	ntal analy ound (Cal	sis (%) c.)	Con	ductivitie	es"
No.	Compound	°C	%	С	Н	N	Solvent	Conc.	Λ
1	$[{(C_6H_5)_3P}_2Cu(pzH)_2]NO_3$	167–9	96	64.3	4.9	9.4	Acetone	1.0	13.0
	$C_{42}H_{38}CuN_5O_3P_2$			(64.2)	(4.9)	(8.9)	DMSO	1.0	39.4
2	$[{(C_6H_5)_3P}_2Cu(Im'H]_2]NO_3$	180-2	74	64.7	5.4	8.5	Acetone	1.1	82
	$C_{44}H_{42}CuN_5O_3P$			(64.9)	(5.2)	(8.6)	CH_2Cl_2	1.0	1.6
3	$[\{(C_6H_5)_3P\}_2Cu(pz'H)(NO_3)]$	1703	34	66.3	5.3	5.4	Acetone	0.6	6.0
	$C_{41}H_{38}CuN_3O_3P_2$			(66.0)	(5.1)	(5.6)	CH_2Cl_2	1.0	1.8
4	$[{(C_6H_5)_3P}_2Cu(pz''H)(NO_3)]$	186-8	75	65.6	5.1	6.0	Acetone	0.9	1.5
_	$C_{40}H_{36}CuN_3O_3P_2$			(65.6)	(5.0)	(5.7)			
5	$[\{(C_6H_5)_3P\}_2Cu(pz^*H)(NO_3)]$	182–6	90	65.5	5.2	5.8	Acetone	1.2	12.3
	$C_{40}H_{36}CuN_3O_3P_2$	100 00		(65.6)	(4.9)	(5.7)			
6	$[\{(C_6H_5)_3P\}_2Cu(BrpzH)(NO_3)]$	18990	63	58,9	4.3	5.1	Acetone	1.0	8.4
_	$C_{39}H_{33}BrCuN_3O_3P_2$			(58.8)	(4.2)	(5.3)			
7	$[\{(C_6H_5)_3P\}Cu(pz^\circ H)_2]NO_3$	1656	61	59.4	5.9	11.6	Acetone	1.0	14.9
	$C_{30}H_{35}CuN_5O_3P$			(59.3)	(5.8)	(11.5)	DMSO	1.1	37.2
8	$[{(C_6H_5)_3P}Cu(Im''H)_2]NO_3$	98 dec	97	64.2	4.9	10.4	Acetone	0.9	79.2
	$C_{36}H_{31}CuN_5O_3P$			(64.0)	(4.6)	(10.4)			
9	$[\{(p-C_7H_7)_3P\}Cu(pzH)_3]NO_3$	135	98	57.0	5.6	15.5	Acetone	0.1	29.1
	$C_{30}H_{33}CuN_7O_3P$		2.6	(56.8)	(5.3)	(15.5)			
10	$[\{(m-C_7H_7)_3P\}Cu(pzH)_3]NO_3$	113-6	96	57.2	5.4	15.6	Acetone	0.1	19.3
	$C_{30}H_{33}CuN_7O_3P$			(56.8)	(5.3)	(15.5)			
11	$[Cu(pzH)_3]NO_3$	195 dec	75	32.8	3.6	29.5			
	$C_9H_{12}CuN_7O_3$	1.50.1		(32.8)	(3.7)	(29.7)			
12	$[\{(C_6H_5)_3P\}_2Cu(tzH)_2]NO_3 \cdot Et_2O$	150 dec	90	61.5	5.1	11.0	Acetone	1.1	18.1
	$C_{44}H_{46}CuN_7O_4P_2$			(61.3)	(5.4)	(11.4)			
13	$[{(C_6H_5)_3P}_2Cu(tzH)]NO_3$	208-210	98	63.1	4.8	7.6	Acetone	1.0	14.0
	$C_{38}H_{33}CuN_4O_3P_2$			(63.5)	(4.6)	(7.8)			
14	$[\{(C_6H_5)_3P\}_2Cu(L^4)]NO_3$	185–9	98	65.7	5.3	8.7	Acetone	0.9	96.5
	$C_{45}H_{42}CuN_5O_3P_2$			(65.4)	(5.1)	(8.5)	CH_2Cl_2	1.0	13.0
15	$[{(C_6H_5)_3P}_2Cu(pzH)]Cl$	17981	75	67.9	5.2	4.0	Acetone	1.0	2.0
	$C_{39}H_{34}ClCuN_2P_2$		-	(67.7)	(5.0)	(4.0)	DMSO	0.9	5.8
16	$[\{(C_6H_5)_3P\}_2Cu(pz'H)]Cl$	152-3	78	68.1	5.6	3.8	Acetone	0.9	1.7
	$C_{41}H_{38}ClCuN_2P_2$			(68.4)	(5.3)	(3.9)	CH_2Cl_2	1.0	0.5
17	$[{(C_6H_5)_3P}_2Cu(pzH)]Br$	185-7	88	63.5	4.9	3.7	Acetone	0.9	1.2
10	$C_{39}H_{34}BrCuN_2P_2$	164 5		(63.6)	(4.7)	(3.8)	•	• •	•
18	$[\{(C_6H_5)_3P\}_2Cu(pz'H)]Br$	164–5	61	64.9	5.2	3.3	Acetone	1.0	2.0
10	$C_{41}H_{38}BrCuN_2P_2$	100 01	50	(64.4)	(5.0)	(3.7)		• •	
19	$[{(C_6H_5)_3P}_2Cu(pzH)]$	189-91	58	59.3	4.5	2.8	Acetone	1.0	1.4
•••	$C_{39}H_{34}CuIN_2P_2$	150 60	-	(59.8)	(4.4)	(3.6)			
20	$[{(C_6H_5)_3P}_2Cu(pz'H)]$	150-60	78	60.5	4.9	3.4	Acetone	1.0	1.5
31	$C_{41}H_{38}CullN_2P_2$	100 001	0.4	(60.7)	(4.7)	(3.9)	. .		1.0
21	$[{(C_6H_5)_3P}Cu(pZH)]I$	199-201	94	50.8	4.4	4.9	Acetone	1.0	4.8
22	$C_{23}H_{23}CuiN_2P$	105 0	0.7	(50.3)	(4.2)	(5.1)	DMSO	1.3	10.9
22	$\begin{bmatrix} (C_6 \Pi_5)_3 \mathbf{F} \mathbf{C} \mathbf{u}(\mathbf{L}) \mathbf{C} \mathbf{I} \end{bmatrix}$	185-9	83	39.4 (59.0)	4.0	10.7	Acetone	1.0	44.2
22	$C_{25}H_{23}CICUIN_4P$	165 4	07	(38.9)	(4.6)	(11.0)	DMSO	1.0	9.8
23	$\begin{bmatrix} (C_6H_5)_3 FCu(L^2)Cl \end{bmatrix}$	105 dec	87	01.0	3.9	10.0	Acetone	1.0	42.0
34	$\bigcup_{29}\Pi_{31} \bigcup \bigcup \bigcup N_4 \Gamma$	176 7	07	(01.0)	(3.3)	(9.9)	A + -	1 1	10.5
24		1/0-/	90	34.1 (54.0)	4.5	10.4	Acetone	1.1	10.5
75	$C_{23}\Pi_{21} \cup I \cup \Pi_{6}\Gamma$	186.0	87	(34.0)	(4.1) 4 1	(10.4)	Apptore	1.0	26.7
43		100-9	0/	54.5 (54.3)	4.2	10.0	Acetone	1.0	30.2
74	$\bigcup_{25} \Pi_{23} D I \bigcup_{11} M_4 \Gamma$	208 11	04	(34.2)	(4.2)	(10.1)	A cot	1 1	04
20		200-11	90	47.3 (10.7)	3.9 (3.9)	14.8	Acetone	1.1	0.4
27	$\sum_{23} \sum_{121} \sum_{12$	> 170 dea	06	(47.7)	(3.0)	5 2	Acetone	1.1	2.0
	$C_{30}H_{25.5}CuN_2P_{1.5}$	> 170 ucc	70	(68.6)	(5.1)	(5.3)	ACTOR	1.1	2.0

 $^{\it a}$ In $\Omega^{-1} cm^2 mol^{-1}$ at room temperature ; conc. is molar concentration ($\times 10^3).$

	1400	ic 3: Science IV data (em) INT THE REGIMES AND INT THE COPPER (1) HERITARS	
Comp.	> 3000	1600-1500	< 600	other data
CuNO ₃ (PPh ₃) ₂	3063 w	1588 w, 1579 w	533 m, 521 m, 503 m, 444 w, 430 w, 281 w, 248 w, 227 w	v(NO ₃): 1470 s, 1280 s
$CuNO_3[(p-C_7H_7)_3P]_2$	3050 w	1652 w, 1598 m, 1559 w	516 m, 505 m, 495 m, 436 m, 421 m, 356 m, 317 wbr, 237 br	$v(NO_3]$: 1460 s, 1288 s
$CuNO_3[(m-C_7H_7)_3P]_2$	3050 w	1589 m	553 m, 545 m, 455 m	$v(NO_3)$: 1470 s, 1286 s
$CuNO_3[(o-C_7H_7)_3P]_2$	3048 w	1585 w, 1573 w	516 m, 504 m, 496 m, 444 w, 428 w, 411 w	$v(NO_3)$: 1470 s, 1284 s
CuCl(PPh ₃) ₂	3047 m	1583 w, 1571 w	530 m, 518 m, 505 m, 495 m, 480 sh, 448 m, 433 m, 225 w,	v(Cu-Cl): 290 s br
			214 w	
CuBr(PPh ₃) ₃	3046 m	1583 w, 1574 w	513 m, 506 m, 490 m, 437 m, 426 m, 411 m, 251 m, 215 m	v(Cu—Br): 165 m
Cul(PPh ₃) ₃	3048 w	1585 w, 1573 w	516 m, 504 m, 496 m, 444 w, 428 w, 411 w	v(Cu—I): 138 m
CuCN(PPh ₃) ₂	3060 w	1580 w	550 w, 520 s, 510 s, 485 m, 440 w, 415 w	v(CN): 2110 m
CuSCN(PPh ₃) ₂	3060 w	1580 w	520 s, 508 s, 485 m	v(SCN) : 2095 m
pzH	3140 m, 3070 vs	1558 m, 1540 m	285 w	v(N—H): 3400–3200 vs, br
Im'H	3173 m, 3137 m, 3109 m	1596s, 1502 m	378 m, 355 m, 269 m, 164 m, 149 m	v(N—H): 3100-2400 br
pz'H	3130 m, 3106 m	1594 s, 1552 w	403 m, 270 m, 230 m	v(NH): 3400-3200 vs
pz"H	3139 w, 3129 m, 3006 w	1583 s	352 m, 282 s	v(NH): 3400-3200 vs
H*zq	3180 s, 2970 s	1577 m, 1500 m	326 m, 284 m	v(N-H): 3180 vs
h∘zd	3180 m, 3140 m	1594 m, 1520 m	571 m, 474 m, 338 m, 282 s, 175 m	v(NH): 3220 vs, br
BrpzH	3066 m	1590 m, 1560 m	364 m, 225 m	v(N-H): 3150 br
Im"H	3129 m, 3113 m	1604 m, 1584 m	543 m, 518 m, 447 m, 436 m, 349 m, 301 m	v(NH): 2800-2300 br
		1548 m, 1519 m		
tzH	3130 s, 3120 m	1531 m	285 w, 189 w, 152 m	v(N-H): 2735 vs br
L'	3140 w, 3119 w, 3107 m	1520 m, 1515 sh	397 m, 355 m, 280 w, 170 w, 120 w	
L^2	3140 w, 3100 w	1565 sh, 1560 s	465 s, 402 w, 360 m, 310 m, 275 m	
L ³	3120 m, 3115 m	1510 sh, 1505 s	390 m	
Ľ,	3150 m, 3085 m	1575 m	422 m. 398 w. 346 w. 288 m. 249 m	
1	3150 br, 3070 w	1584 w, 1569 w, 1534 w	527 m, 518 m, 504 m, 495 m, 436 w, 422 w, 284 w, 254 w	v(N—H): 3180m, br; v(NO ₃): 1376s,
2	3140 w, 3123 w	1586 w, 1569 m	514 w, 508 m, 492 m, 434 w, 417 w, 373 w, 284 w	$v(N-H): 3170 \text{ br}; v(NO_3): 1360 \text{ sbr},$
	3061 w, 3044 w			8/1 W
3	3135 w, 3110 w, 3046 w	1584 w, 1570 sh	542 w, 527 m, 516 m, 504 m, 495 w, 445 w, 420 w, 285 w	$v(N-H)$: 3194 br; $v(NO_3)$: 1430 s br, 1303 s br,
4	3140 w, 3130 w, 3051 w	1584 w, 1557 w, 1542 w	526m, 516m, 502m, 443w, 430w, 417w, 369m, 282m,	$v(N-H)$: 3200 br; $v(NO_3)$: 1440 s,
S	3130 w, 3117 w, 3051 w	1586 w, 1571 w	229 m, 518 s, 508 s, 494 s, 442 w, 432 w, 421 w, 397 w, 284 w	$v(N-H): 3200 \text{ br}; v(NO_3): 1435 \text{ s},$
6	3115 w, 3040 w	1584 w, 1571 w, 1539 w	543 w, 516 m, 496 m, 442 w, 430 w, 288 w	1301s $v(N-H)$: 3200 br; $v(NO_3)$: 1434m,
				m 667 l

Table 3. Selected IR data $(cm^{-1})^a$ for the ligands and for the copper(I) derivatives

7	3186 w, 3159 w, 3106 w	1588 w, 1525 w	527 m. 507 m. 494 m. 439 w. 425 w. 292 w	$v(N-H)$: 3308 br; $v(NO_3)$: 1435 m,
×	3053 w 3100 w, br	1607 w, 1586 w, 1516 m	574 w, 521 m, 505 m, 489 m, 438 w, 427 w, 283 w	1278 s $v(N-H)$: 3150 w, br; $v(NO_3)$: 1350 br,
6	3139 w, 3110 w, 3050 w	1598 w, 1560 w, 1543 w	589 w, 543 w, 524 m, 508 m, 426 m, 284 w	829 m v(NH): 3328 s br, 3180 s br; v(NO ₃):
10	3185 sh, 3146 sh, 3047 w	1527 w, 1507 w 1592 w, 1540 w	551 m, 522 w, 471 m, 455 m, 427 w, 284 w	1349 s, 1317 s. 829 s v(N—H): 3200 br, v(NO ₃): 1356 s,
11	3136 w. 3050 w	1570 w	456 w	1319 s, 829 w w(N—H) : 3300 br, w(NO ₃) : 1360 s br
12	3112 w, 3100 w, 3053 w	1585 w, 1536 w, 1513 w	542 w, 528 m, 515 m, 505 m, 492 m, 442 w, 280 w	v(N—H): 3200 br; v(NO ₃): 1378 s,
13	3143 w, 3109 w	1586 w, 1535 w, 1520 w	528 m, 513 m, 504 m, 489 m, 441 w, 289 w	$v(N-H): 3200 \text{ sbr}; v(NO_3): 1395 \text{ s.}$
14	3143 w. 3109 w. 3076 w	1586 w. 1573 w	528 m. 513 m. 504 m. 489 m. 448 vw. 443 w. 285 w	1329 s w(NO ₂) : 1374 s. 1329 s
IS	3110 w, 3049 w	1585 w, 1571 w, 1518 w	524 m, 513 m, 506 m, 493 m, 437 w, 428 w, 423 w, 284 w	v(N-H): 3250 s br; v(Cu-Cl):
16	3140 w, 3110 w, 3049 w	1584 w, 1567 m	527 m, 517 m, 505 m, 489 m, 449 w, 437 w, 417 w, 282 vw	220 m br v(N-H): 3212 s br; $v(Cu-CI)$:
17	3133m 3114w 3049m	1585 w 1571 w 1520 w	536 m 516 m 400 m 441 m 417 m 281 m 248 m	10 m 222 vv(NH) · 3256 s br
18	3140 w, 3104 w 3053 m, 3031 sh	1586 m, 1570 m	512 s, 493 m, 487 m, 445 w, 429 w, 416 w, 281 w, 252 w	v(N—H): 3281 s br
61	3140 w, 3100 w, 3050 w	1585 w, 1570 w, 1515 w	516 m, 499 m, 442 w, 415 w	v(N-H): 3285 s br
20	3140 w, 3100 w, 3045 m	1586 m, 1568 m	597 w. 526 m. 516 m. 504 m. 496 m. 433 m. 415 m. 284 w. 232 w	v(N—H): 3261 s br
21	3110 w, 3050 w	1586 w, 1568 m	573 m, 524 m, 504 m, 488 m, 448 w, 420 m, 284 m	v(N-H): 3325 s br
22	3100 w, 3080 m	1580 w, 1520 m br	522 w, 499 m, 402 w, 250 w, 232 w	v(CuCl): 214 s
23	3117 w, 3071 w, 3051 m	1585 w, 1561 m	526 m, 505 m, 496 m, 488 m, 471 w, 445 w, 421 w, 351 w, 254 w	v(CuCl): 220 br, 196 m
24	3110 w, 3100 w, 3079 w	1535 w, 1525 w	522 m, 507 m, 500 m, 435 w, 386 w, 304 s	v(CuCl): 223 s
25	3128 w, 3119 w, 3089 m	1583 w, 1519 w	522 m, 500 m, 434 w, 401 m, 378 w, 215 vw	
26	3076 w	1560 w, 1542 w	523 m, 500 m, 436 w, 386 w	
		1523 w, 1515 w		
27	3055 w	1585 w, 1571 w, 1559 w	542 w, 526 m, 514 m, 497 m, 449 w, 415 w, 283 w	
		W / UC1 ,W 1541		

" Nujol mull

1717

ſ

[[[

[

[

(

נ [[נ

| | | | |

[(

[[[[[

> . !

Compound	Solvent	$q(\mathbf{H}_{1})g$	δ(¹³ C)	δ(³¹ P)
CuNO ₃ (PPh ₃) ₂	CDCI, (CD2),CO	7.20–7.50 m 7.20–7.60 m	128.60 d, 129.5 s, 131.8–132.2 m, 133.7 d	-0.20
$CuNO_{3}[p-C_{7}H_{7})_{3}P]_{2}$	CDCI,	7.00–7.60 m, 2.32 s, 2.39 s	21.40 s, 21.50 s, 129.2 d, 129.5 s, 132.1 d 133.6 br. 140.2 d. 142.2 d	-2.05
$CuNO_3[(m-C_7H_7)_3P]_2$	CDCI,	7.00–7.70 m, 2.16 s, 2.37 s	21.30 s, 21.40 s, 128.30 d, 128.6 s, 129.2 d 130.6 s 131 0 132 5 d 132 7 s 134 4 s 138 5 s	-1.53
$CuNO_3[(o-C_7H_7)_3P]_2$	CDCI ₃	6.70–7.50 m, 2.40 s, 2.49 s	21.20 s, 21.50 s, 21.90 s, 22.00 s, 125.5 d, 126.2 d 21.28 s, 130.2 d, 131.8 d, 132.0 d, 132.9 d 133 10s 142 51 s, 142 92 s, 143 5 s, 143 6 s	
CuCl(PPh ₃) ₂	CDCI,	7.20 m, 7.40 m	128.64 d, 129.89 s, 132.41 d, 133.91 d	-3.85
CuBr(PPh ₃),	CDCI,	7.15 m, 7.30 m	128.41 d, 129.40 s, 133.77 d, 134.00 d	-4.52
CuI(PPh ₃) ₃	CDCI,	7.20 m, 7.35 m	128.45 d, 129.47 s, 133.74 d, 134.04	-4.76
CuCN(PPh ₃) ₂	CDCI,	7.02 m, 7.22 m	128.28 d, 129.21 s, 133.86 d, 134.35 d, 152.28 s br	
CuSCN(PPh ₃) ₂	CDCI ₃	7.20–7.40 m		
pzH	CDCI,	6.22 t, 7.35 d, 7.49 d		
Im'H	CDCI ₃	2.36 s, 6.96 d		
pz'H	CDCI,	2.21 s, 5.75 s		
	CD_2Cl_2	2.28 s, 5.80 s, 10.5 br	12.43 s, 103.76 s, 144.0 br	
pt"zq	CDCI ³	2.32 s, 6.06 d, 7.48 d		
h*zq	CDCI,	2.09 s, 7.36 s		
H∘zd	CDCI,	1.87 s, 2.20 s		
BrpzH	CDCI ₃	7.65 s		
tzH	CDCI,	7.94 s, 8.09 s		
L'	CDCI ₃	6.26 s, 6.29 t, 7.53 d, 7.63 d	65.2 s, 107.2 s, 129.6 s, 140.8 s	
L^{2}	CDCI ³	2.18 s, 2.40 s, 5.78 s, 6.04 s	11.2 s, 13.5 s, 106.4 s, 140.4 s, 148.3 s	
L ³	$(CD_3)_2CO$	6.71 s, 8.10 s, 8.80 s	59.0 s, 145.2 s, 152.4 s	
۲۶	CDC1 ₃	2.0 s, 6.23 s, 7.33 s, 7.37 s	9.28s, 65.79s, 118.15s, 128.52s, 141.80s	
^{<i>a</i>} s = singlet, m = multiplet, d	= doublet, br = broad.			

Table 4a. Some NMR data^a of the ligands and of the starting copper(I) derivatives

^as = singlet, m = multiplet, d = doublet, br = 1 ^b δ in ppm. 103

10.14

.

.

10.00

1000

10.000

11.00 00.00

014 W-114

10.00

Compound	Solvent	$\delta({}^{ }\mathrm{H})^a$	$\delta^{(13}C)$	$\delta^{(31}P)$
_	Acetone	6.50 br, 7.20–7.50 m br, 7.80 s br		
	Acetonitrile	6.80 s br, 7.16–7.60 m, 8.30 m		
	CDCI	6.45 br. 7.05–7.45 br. 7.80 br. 12.40 br		
2	Acetonitrile	2.13 s, 7.20–7.55 m		
	CDCI	2.10 br. 7.00–7.50 m br		
3	Acetonitrile	2.08 s, 2.12 s, 6.20 br, 7.15–7.70 m	12.26s, 129.77d, 131.12s, 134.30c, 132.d, 133.65d	
	CDCI	1.80–2.40 br, 5.95 s br, 7.0–7.5 m br, 12.4 br		
	Acetone	2.05 br, 2.20 br, 7.20–7.55 m br, 7.60 s		
4	Acetonitrile	2.21 s, 7.20–7.55 m br, 7.70 br	129.81 d, 131.15 s, 134.32 c	-0.281
	CDCI	2.20 s br, 6.80–7.40 m br, 7.60 br	129.11 d, 130.28 s, 133.20 d, 134.13 c	
5	Acetonitrile	2.21 s, 7.15–7.70 m br	8.96s, 129.81 d, 131.18s, 133.50d, 134.30d	
	CDCI,	2.28 s br, 7.10–7.80 br	129.10 d, 130.28 s, 133.2 d, 134.13 d	
6	CDCI	6.16 s, 7.0–7.60 m, 13.5 br		
7	CDCI	1.90 s, 2.19 s, 7.25–7.45 m br	129.15 d, 130.38 d, 133.32 d, 134.09 d	
00	CDCI	5.25 sbr, 7.05 s br, 7.20–7.50 m		
6	CDCI	2.35 s, 7,10–7.35 mbr, 8.20 br	21.85s, 129.51d, 129.79d, 132.56d, 134.01d, 140.18s	
10	CDCI,	2.22 s. 7.10–7.35 br. 7.4–7.8 br		
12	CDCI	1.22 t, 3.48 g, 7.10–7.40 m br, 7.90 br		
13	CDCI	7.10-7.45 m br, 7.80 br		
14	CDCI ₃	2.18 s, 6.20 s br, 6.75 s br, 7.0–7.5 m br, 8.05 s br	13.62, 121.3s, 128.82d, 130.14s, 132.1d, 133.34d	+0.87
15	CDCI,	7.15–7.45 m		
16	CDCI,	2.13 s, 5.82 s, 7.20–7.45 m	128.87 d, 129.87 s, 134.35 d, 134.67 s	
17	CDCI,	6.30 s br, 7.15–7.50 m, 11.3 br		
18	CDCI,	2.05 s, 5.80 s, 7.15–7.43 m	12.86s, 105.44s, 128.90d, 129.96s, 133.93s, 134.40d	
	$CD_2Cl_2^c$	2.00 s, 5.82 s, 7.30 m, 7.40 m	12.07 s, 104.94, 128.31, 129.44 s, 133.83 d, 144.0 s	
	$CD_2Cl_2^d$	1.50 sbr, 2.22 sbr, 5.80 s, 7.20–7.40 m	11.44s, 13.91s, 105.33s, 128.57d, 129.73s, 133.8m, 139.96s, 148.32s	
19	CDCI ₃	6.18 s, 6.30 s, 7.20–7.60 m		
20	CDCI ₃	2.13 s, 5.00 br, 5.85 s, 7.15–7.45 m	12.87s, 105.49s, 128.91d, 130.04s, 133.63s, 134.14s, 134.47s	-4.59
21	CDCI,	2.13 s, 5.90 s, 7.25-7.43 m, 7.45-7.60 m		
22	CDCI,	6.28 br, 6.50 br, 7.10–7.50 m br, 7.90 s br	64.01 s, 128.0 br, 128.66 d, 129.92 s, 132.68 d, 133.86 d	
23	CDCI ₃	2.03 s, 2.38 s, 5.80 s, 6.22 s, 7.20–7.65 m br	12.0s br, 14.4 br, 129.02 d, 130.15 s, 132.58 d, 134.55 d	-3.43
24	DMSO	6.68 s, 7.35–7.50 br, 8.08 s, 8.90 s	128.61 s, 128.77 s, 130.18 s, 131.41 d, 131.97 d, 133.31 s	
25	CDCI	6.20 s, 6.49 s br, 7.20–7.50 m br, 7.80 s br	64.05 s, 106.8 s br, 128.60 d, 129.8 s, 130.4 s, 132.83 d, 133.89 d, 141.34 s	
26	DMSO	6.70 s, 7.40–7.50 m br, 8.08 s br, 8.92 s br	128.66 d, 130.0 s, 133.38 d	
27	CDCI ³	6.08 s, 7.30–7.50 m		-3.55
	Acetone	7.20–7.30 m		

5 Mini

 d s = singlet, m $^{b}\delta$ in ppm. c T = 298 K. d T = 200 K.

Fig. 2. Structure proposed for the compound 27.

Conductivities

The conductivity measurements were carried out only on the stable solutions. The complexes 3-7, 13 and 15-21 are not electrolytes in acetone, thus ruling out ionic structures such as [Cu(L) $(PPh_3)_n$ ⁺[X]⁻, or displacement of the anionic ligands by the solvent. A negligible ionic dissociation is found for the derivatives 9-12 and 22-25 whereas the derivatives 15 and 20-22 are not electrolytes not only in acetone but also in ionizing solvents such as DMSO. Finally, the complexes 2, 8 and 14 are electrolytes in acetone and the latter also in dichloromethane, thus giving further support to its ionic structure observed also in the solid state. The compound 1, which is probably ionic in the solid state, is a non-electrolyte in acetone, in accordance with a dissociation according to eq. 10. This is also supported by its IR spectrum recorded in acetone solution: the $v(NO_3)$ absorptions are similar to those indicated for the Cu(NO₃)(Ph₃P)₂.¹¹

NMR spectra

¹H and ¹³C NMR spectra (for a comparison in Table 4A the NMR data of some ligands and of the starting copper(I) derivatives are reported) were carried out only when the compounds were sufficiently soluble and the solutions sufficiently stable. For the derivatives of bis(pyrazol-1-yl)alkanes the pattern of chemical shifts on going from the free to the coordinated ligand is the same as that previously observed:²⁴ the signals due to ring and methylene protons are shifted downfield upon coordination, whereas the carbons of the methylene bridges undergo an upfield displacement. Indeed the Δ , difference in chemical shift of a given carbon in the complex and in the free ligand, is negligible for the methyl carbons and positive for the azole ring carbons.

On the other hand, in the ¹H and ¹³C NMR spectra of most of the complexes containing monodentate azole ligands, the resonances due to protons or carbons of the azole ring cannot be detected because they are often overlapped with the resonances due to aromatic protons of the phosphine

ligands, or because the solutions are not sufficiently stable. For example, most of the compounds when dissolved in chloroform or in acetone, were oxidized by air, giving a blue solution in a very short time. A comparison between the ¹H spectra of the complexes 1, 3-5 and 15-21 and of the ligands in the same solvents reveals that, upon complex formation, the signals of protons of the azole ring are generally shifted downfield, as required by a diminution of the electron density on the ligand owing to the existence of the N-Cu donor bond. The presence of only one signal in the ³¹P NMR spectrum of compound 27 is not in accordance with the structure proposed, but that is probably due to some rapid exchange process and/or to dissociation.

The ¹H and ¹³C NMR spectra of the derivatives 15-21 exhibit only one resonance instead of the two expected for the protons and carbons in 3 and 5 positions. This is due to a fluxional behaviour of these compounds, which probably requires a concomitant prototropy and metallotropy of the ligand.²⁵ On cooling the CD₂Cl₂ solutions of these complexes, changes in the NMR spectra occur: at ca 250 K the resonance due to 3 and 5 positions broadens and at ca 223 K collapses. At temperatures below 200 K the metal/proton "shuttling" between the two nitrogen sites is slow enough to allow the observations of two well-separated signals (Fig. 3) (for example the signals of C3 and C5 in the ${}^{13}C$ spectrum of 18 fall at ca 140.0 and 148.3 ppm respectively).

Description of the molecular structure of nitrato bis(tri-p-tolyphosphine)copper(I)

The crystal structure consists of discrete molecules of nitratobis(tri-*p*-tolyphosphine)copper(I) separated by van der Waals distances.

The molecular structure of the title compound is shown in Fig. 4. The relevant bond distances and angles are reported in Table 5. This compound is monomeric with four-coordinated copper in the solid state. The copper atom is in a strongly distorted tetrahedral environment [O1-Cu-O2 and P1-Cu-P2 are 56.2(4) and 128.0(1)° respectively]. The nitrate anion acts as bidentate ligand with Cu-O distances [Cu-O2: 2.184(9) Å and Cu—O1: 2.217(9) Å] longer than the sum (ca 1.83) Å) of the covalent radii of O and copper(I), suggesting poor coordination of the nitrate, whereas the Cu-P distances [2.254(3) and 2.252(3)] are normal. The long Cu-N distance [2.61(2) Å] precludes any bonding interaction between these two atoms. There are two different sets of Cu-P-C bond angles [116.8(4), 116.4(3), 116.7(3), 117.9(4)

Fig. 3. ¹³C NMR spectra of $CuCl(PPh_3)_2(pz'H)$, 18, at 298 and 193 K.

Fig. 4. Molecular structure and labelling scheme for CuNO₃[P(p-tolyl)₃]₂.

and 108.0(3) and $110.2(3)^{\circ}$] in accordance with the non-equivalence of the phenyl rings found also in the ¹H and ¹³C NMR spectra in CDCl₃ solution where two sets of aromatic methyls are observed.

The small differences with respect to the similar $Cu(NO_3)(Ph_3P)_2$,²⁶ [for example in this compound the P—Cu—P angle is 131.2(1) and both the Cu—O distances are 2.22(1) Å] are probably of electronic

origin caused by the presence in the phenyl ring of an electron-releasing group such as the methyl, which makes the phosphine ligand more basic, whereas the differences are more evident with respect to other pseudotetrahedral copper(I) derivatives as $Cu(NO_3)(Cy_3P)_2^{27}$ and Cu(hfac) $(Cy_3P)_2^{28}$ (hfac = hexafluoroacetylacetonate), containing sterically hindered groups as Cy_3P and

Cu - P(1)	2.254 (3)	P(1) - C(1)	1.786 (12)
Cu - P(2)	2.252 (3)	P(1) - C(8)	1.799 (14)
Cu = O(1)	2.217 (9)	P(1) - C(15)	1.798 (13)
Cu-O (2)	2.184 (9)	P(2) - C(22)	1.788 (12)
N-O(1)	1.238 (23)	P (2)—C (29)	1.807 (9)
N-O (2)	1.228 (14)	P (2)—C(36)	1.819 (9)
N—O (3)	1.161 (20)		
Cu - P(1) - C(1)	116.8 (4)	P(1) - Cu - P(2)	128.0(1)
Cu - P(1) - C(8)	116.4 (3)	$C(1) \rightarrow P(1) \rightarrow C(8)$	103.5 (5)
Cu - P(1) - C(15)	110.2 (3)	C(1) - P(1) - C(15)	103.8 (5)
Cu - P(2) - C(22)	108.0 (3)	C(8) - P(1) - C(15)	104.7 (6)
Cu - P(2) - C(29)	116.7 (3)	C(22) - P(2) - C(29)	104.9 (6)
Cu - P(2) - C(36)	117.9 (4)	C(22) - P(2) - C(36)	103.7 (5)
P(1) - Cu - O(1)	117.2 (3)	C (29)—P (2)—C (36)	104.2 (4)
P(2) - Cu - O(1)	104.9 (3)	O(1)NO(2)	114(1)
P(1)— Cu — $O(2)$	116.4 (2)	O(1) - N - O(3)	125(1)
P (2)—Cu—O (2)	111.9(2)	O(2) - N - O(3)	121 (1)
O(1)—Cu—O(2)	56.2 (4)		

Table 5. Selected bond distances (Å) and bond angles (°) with e.s.d.s in parentheses

hfac, or with respect to $Cu(BH_4)(Ph_3P)_2^{29}$ where probably a delocalized bonding between the copper atom and the borohydride group is present.

Acknowledgements—Financial support from the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) and the Consiglio Nazionale delle Richerche (C.N.R.), Rome is gratefully acknowledged.

Supplementary material available

Tables of observed and calculated structure factors, anisotropic thermal parameters for non-hydrogen atoms, tables of atomic coordinates and isotropic thermal parameters, as well as hydrogen parameters, are available as supplementary material.

REFERENCES

- (a) A. Cingolani, A. Lorenzotti, D. Leonesi and F. Bonati, Gazz. Chim. Ital. 1981, 111, 243; (b) A. Cingolani, A. Lorenzotti, D. Leonesi and F. Bonati, Inorg. Chim. Acta 1984, 81, 127; (c) G. Gioia Lobbia, F. Bonati, A. Cingolani, D. Leonesi and A. Lorenzotti, J. Organomet. Chem. 1989, 359, 21; (d) C. Pettinari, C. Santini, D. Leonesi and P. Cecchi, Polyhedron 1994, 13, 1553.
- (a) J. G. Vos and W. L. Groeneveld, *Inorg. Chim.* Acta 1977, 24, 123; (b) S. Trofimenko, *Chem. Rev.* 1972, 72, 497 and references therein; (c) H. Okkersen, W. L. Groeneveld and J. Reedijk, *Rec. Trav. Chim.* 1973, 92, 945.
- 3. (a) G. La Monica, G. A. Ardizzoia, F. Cariati, S.

Cenini and M. Pizzotti, *Inorg. Chem.* 1985, **24**, 3920; (b) G. A. Ardizzoia, G. La Monica, M. A. Angaroni and F. Cariati, *Inorg. Chim. Acta* 1989, **158**, 159.

- 4. I. D. Potter and B. D. James, *Inorg. Chim. Acta* 1993, **207**, 165.
- G. A. Ardizzoia, M. A. Angaroni, G. La Monica, F. Cariati, M. Moret and N. Masciocchi, J. Chem. Soc., Chem. Commun. 1990, 1021.
- K. D. Karlin and J. Zubieta (Eds), *Biological and Inorganic Copper Chemistry*. Adenine Press, New York (1986).
- (a) H. B. Gray and E. I. Solomon, in Copper Protein, (Edited by T. G. Spiro) Chapter I. Wiley Interscience, New York (1981); (b) Metal Ions in Biological System, Vol. 13, Copper Proteins. (Edited by H. Siegel). Marcell Dekker, New York (1981); (c) R. Lontie and R. Witter, Inorganic Biochemistry, Vol. 1. Elsevier, New York (1973).
- F. Bonati, A. Cingolani, G. Gioia Lobbia, D. Leonesi, A. Lorenzotti and C. Pettinari, *Gazz. Chim. Ital.* 1990, **120**, 341.
- 9. R. M. Claramunt, H. Hernandez, J. Elguero, S. Julia, Bull. Soc. Chim. Fr. 1983, 2, 5.
- G. Gioia Lobbia and F. Bonati, Synth. React. Inorg. Metal-Org. Chem. 1988, 18, 551 and references therein.
- (a) F. H. Jardine, A. G. Vohra and F. J. Young, J. Inorg. Nucl. Chem. 1971, 33, 2941; (b) R. Restivo, A. Costin, G. Ferguson and A. J. Carty, Can. J. Chem. 1975, 53, 1949.
- (a) F. Cariati and L. Naldini, *Gazz. Chim. Ital.* 1965, 95, 3; (b) J. T. Gill, J. J. Mayerle, P. S. Welcker, D. F. Lewis, D. A. Ucko, D. J. Barton, D. Stowens and S. J. Lippard, *Inorg. Chem.* 1976, 15, 1155.
- 13. M. Colapietro, L. Barba, C. Marciante, A. Pifferi and R. Spagna, private communication.

- International Tables for X-ray Crystallography, Vol. IV, pp. 99–149. Kynoch Press, Birmingham (1974).
- M. Camalli, D. Capitani, G. Cascarano, S. Cerrini, C. Giacovazzo and R. Spagna, Italian Patent No. 35403c/86. SIR CAOS User Guide. Istituto di Strutturistica Chimica CNR.
- J. Elguero, *Pyrazoles and Their Benzo Derivatives*. (Editors-in-chief A. R. Katritzky and C. W. Rees, Edited by K. T. Potts), Vol. 5, Part 4A, Chapter 4.04, pp. 167–303. Pergamon Press, Oxford (1984).
- (a) R. C. Cass, G. E. Coates and R. G. Hayter, J. Chem. Soc. 1955, 4007; (b) E. V. Abel, R. A. N. McLean and I. H. Sabherwal, J. Chem. Soc. A, 1969, 133; (c) W. T. Reichle, *Inorg. Nucl. Chem. Lett.* 1969, 5, 981.
- (a) P. D. Akrivos, S. K. Hadjikakou, P. Karagiannidis, D. Mentzafos and A. Terzis, *Inorg. Chim. Acta* 1993, **206**, 163; (b) V. G. Albano, G. Ciani and M. Manassero, J. Chem. Soc., Dalton Trans. 1972, 171.
- A. L. Bandini, G. Banditelli, F. Bonati, G. Minghetti, F. Demartin and M. Manassero, J. Organomet. Chem. 1984, 269, 91.
- M. R. Churchill, B. G. DeBoer and D. J. Donovan, *Inorg. Chem.* 1975, 14, 617.
- 21. K. Nakamoto, in Infrared and Raman Spectra of

Inorganic and Coordination Compounds, 4th edn, p. 254. Wiley Interscience, New York (1986).

- 22. K. Shobatake, C. Postmus, J. R. Ferraro and K. Nakamoto, *Appl. Spectrosc.* 1969, 23, 12.
- 23. (a) G. A. Bowmaker and D. A. Rogers, J. Chem. Soc., Dalton Trans. 1984, 1249; (b) J. Bradbury,
 K. P. Forest, R. H. Nuttall and D. W. A. Sharp, Spectrochim. Acta 1967, 23, 2701.
- (a) A. Lorenzotti, A. Cingolani, D. Leonesi and F. Bonati, *Gazz. Chim. Ital.* 1985, **115**, 619; (b) A. Lorenzotti, A. Cingolani, G. Gioia Lobbia, D. Leonesi and F. Bonati, *Gazz. Chim. Ital.* 1987, **117**, 191.
- (a) N. F. Borkett and M. I. Bruce, J. Organomet. Chem. 1974, 65, C51; (b) R. Gassend, J. C. Marie and J. C. Pommier, J. Organomet. Chem. 1977, 132, 69; (c) M. A. Angaroni, G. A. Ardizzoia, T. Beringhelli, G. D'Alfonso, G. La Monica, N. Masciocchi and M. Moret, J. Organomet. Chem. 1989, 363, 409.
- G. G. Messmer and G. J. Palenik, *Inorg. Chem.* 1969, 8, 2750.
- 27. W. A. Anderson, A. J. Carty, G. J. Palenik and G. Schreiber, *Can. J. Chem.* 1971, **49**, 761.
- H. -K. Shin, M. J. Hanpden-Smith, E. N. Duesler and T. Kodas, *Can. J. Chem.* 1992, **70**, 2954.
- S. J. Lippard and K. M. Melmed, *Inorg. Chem.* 1967, 6, 2223.